Introduction/background: Many earthquake disasters occur in Japan, and hospital buildings in particular require special measures to be able to function effectively at such times. It is predicted that a large number of casualties will go to hospitals at the time of a disaster.

Research question(s)/aims: In this study, we investigated the acceptance plan for a large number of casualties at disaster base hospitals in Japan and clarified the current situation. The purpose was to compile the results into a manual to educate about disaster countermeasure activities and to obtain guidelines for planning hospital buildings that can respond to disasters in the future.

Research method: Oral surveys were conducted at 34 disaster base hospitals, and their response status for accepting a large number of casualties was grasped. Representative examples of the results were compiled into a medical rescue station installation.

Conclusion: Based on the results of the survey, methods of responding to disasters were grasped concretely and compiled, as case studies, into a manual for accepting patients and setting up patient areas, and issues that need to be considered in planning hospital buildings that can respond to disasters were examined. In the future, we will aim to elucidate matters that need to be considered during more detailed planning, taking into account factors such as bed layout.

I. Method of responding to changes in situation

1) At night, stormy weather, intense heat, etc.

By devising a method for responding to situation changes in an ad-hoc situation, smooth changes will be possible. Consider the ease of change from the basic plan, and also consider various flow lines after the change.

Basic form

- Triage area: in front of the outpatient entrance
 - Be easy to see the patients when they respond to some weather changes.
 - Easy to find the number of people who can enter the hospital.
 - Easy for the nurses to recognize because it is near the hospital entrance.
 - Easy for ambulances to approach.

- Green area: in front of the outpatient entrance
 - Be easy to see the area.
 - Easy to recognize because it is near the hospital entrance.
 - Easy to receive patients.
 - Can be divided into red area and yellow area.
 - Easy to leave the area.

At night and in the case of bad weather, intense heat, etc.

- Orange area (entrance hall): Ардают тан
- Green area (entrance hall): Ардут нир

2) When there are fewer medical staff available than planned

Basic form

- Green area (entrance hall)
 - Easy to find the number of people who can enter the hospital.
 - Easy to find the number of people who can enter the hospital.
 - Can be expanded from the yellow area.
 - Easy to leave the hospital.
- Black area: Underground parking
 - Easy to see.
 - Easy to transport outside the building / site.

Other reference point
- Triage area
- Red area
- Green area
- Other area
- Chi

Other reference point
- Triage area
- Red area
- Green area
- Other area
- Chi

III. Setting method according to building shape and operation status

There may be situations where you have to alter a building shape, or you need to consider joint management with local governments. We will introduce examples according to each situation.

Operation in medium-sized facilities

While keeping the entire system, the emergency department is composed. It is possible to create a setup in consideration of flow lines and staffing.

Collaborative setup with local government

In collaboration with local governments, there are cases where the triage area and green areas arefactioned by the local medical associations, and the others are handled by the hospital.

The hospital

- Patient area
- Bed area
- Emergency area
- Recovery area

Other hospital

- Patient area
- Bed area
- Emergency area
- Recovery area

Legend in architectural design

- Triage area
- Red area
- Green area
- Yellow area
- Orange area
- Chi

Other reference point
- Triage area
- Red area
- Green area
- Other area
- Chi

Appreciation of funding of this study from KAKENHI (Grants-in-Aid for Scientific Research), Grant-in-Aid for Scientific Research (C) 16K06661 (2016 ~ 2020).